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I. INTRODUCTION AND HISTORY

Let (Q, ~{, Pr) be an arbitrary probability space with distribution function
(d.f.) Fx of the real random variable (r.v.) X: Q ---+ R, defined by
F;r:(x)== Pr{w E Q: X(w) ~::;; x}, for every x E R. Let X* be a normally
distributed random variable with mean 0 and variance 1, i.e., x* is a random
variable with d.f. Fx*(x) (27T)-1/2 f~cy. exp(-u2j2) duo

A sequence (Xn)~~l of real r.v.'s with variance satisfying

for each 11 EN,

is said to satisfy the central limit theorem [2, p. 223] in case (n ---+ CXJ)

where

FT,,(x) -+ Fx*(x)

n

Tn := S~l I [x/;- E(Xlc)],

lc~l

(for each .Y E R),

Sn
2

= Var (I [Xk - E(X,J]'j .
A=l I

(1.1)

(FT (x) denoting the d.f. of the normalized sum Tn' and the expectation
E(/() := fR x dFx(x)). This theorem is actually satisfied provided the sequence
of LV. is independent (which is case below) and identically distributed.

Of the many versions equivalent to (1.1) let us recall two further ones
needed below. One is in terms of the pointwise convergence of the corre
sponding characteristic functions, namely

(1.2)

* The research of Lothar Hahn was partially supported by DFG grant Ne 171 'J.
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mainly used to prove that a sequence of LV. satisfies the central limit theorem.
A second equivalence to (1.1) is

r f(x) dFTn(x) -~ " f(x) dlx'(x)
'R 'R

(/1~ 00), ( 1.3)

for each IE CB(R), CB(R) denoting the class of bounded, uniformly con
tinuous functions defined on R.

A sufficient condition for the validity of (1.1) is

(/1-->- co), (1.4)

for each[E cBr(R) and some r EN, where Vx : CB(R) --+ CB(R) is the linear
operator defined by

Vxf(y):= f f(x 1- y) dFx(x),
'R

(1.5)

and CB'(R) = {fE CB(R):fU) E CB(R), 1 c-:;'j <:: rj, ••~ SUpuER if(y)j.
The operator Vx was mainly introduced by H. F. Trotter [19] in order to
present an elementary proof that a sequence (Xn)~;~l of LV. satisfies the central
limit theorem; it was taken over in a modified form in the monograph [18]
by A. Renyi (who, however, did not cite Trotter).

The study of the rate of convergence of F T (x) to l'x.(x) as /1 -~ co in the
uniform norm, apparently initiated by A. Liap~unov [11] in 1901, and carried
out by H. Cramer [5] in 1937 and A. C. Berry [4] and C. G. Esseen [6] in
the fourties, has been receiving considerable attention in recent years by
V. M. Zolotarev [21], 1. A. Ibragimov [9], V. Paulauskas [14], J. Banys,
N. Kalinauskaiti and P. Vaitkus [I], V. V. Petrov [16], L. V. Osipov [12],
L. V. Osipov and V. V. Petrov [13] and W. Feller [7].

There seem to be essentially two different types of results established so
far, namely "large 0" and "small 0" approximation estimates.

If the absolute third moment

133 : E(, X a) = j~ I x 1:3 dFx(X),

is finite, then Berry and Esseen showed l that

(1.6)

if the sequence of real LV. is independent and identically distributed. Con
cerning sharper estimates, the example of the lattice distributions shows that

1 There arc also investigations concerned with the best possible constant C. For example,
(27T) 1/2 C 0.82. These investigations [20] do not interest us here.
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the existence of higher absolute moments would not yield a better order of
approximation than n-I / 2 (compare V.B. Gnedenko and A. N. Kolmogorov
[8, p. 212]). However, if the d.f. FAx) satisfies a condition of Cramer, namely

(1.7)

and if the pseudomoments (apparently first utilized by H. Bergstrom [3])

(0 ~j < r) (1.8)

and if the rth absolute moment

f3r := E(I x n < +00,

then lbragimov [9] showed that for any even r ~ 4

(1.9)

(11 ---+ 00). (1.10)

The first question is whether it is possible to obtain an order 0(11- 11 - 2)/2)

provided only conditions (1.8), (1.9) are satisfied, the crucial condition (1.7)
being dropped. Here Paulauskas [14] (actually in the frame of more general
investigations) only achieved the order 0(n-1 / 2) and not 0(11-(1'--2)/2) as desired.
However, if one would work in the equivalent convergence type (1.2), would
it then be possible to show that

Jf(x) d[FTJx) - FX*(x)] = 0(11-(r-2)/2)?
R

(1.11)

This will indeed be shown to be the case provided fE C~-I(R) and the
(r - 1)th derivative pr-l) E Lip 1, conditions (1.8), (1.9) being satisfied
(see Theorem 2). Here r may also be odd.

The next question is what happens when the sequence of LV. is not iden
tically distributed in which case very little seems to be known. If, instead
of (l.8), one introduces the condition

with
Ui 2 := Var(Xi ),

and, instead of (1.9), condition

(O~j<r;iEN), (1.12)

(1.13)

f3r,i := E(I Xi n < +00 (i EN), (1.14)
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then it will be shown that a result of type (1.11) is possible; for the precise
formulation see Theorem I. (Note that if (Xn):~l is identically distributed,
then (1.8) implies (1.12) since al == I, i EO N. and Fx = Fx , i,j EO N).

The second type of result is the small o-type the~rem. If at first (Xn):cl
is identically distributed, then Esseen [6] showed that (see [8, p. 195] or [17.
p. 180])

Q2(X) I ...
11

uniformly in x provided conditions (1.7) and (1.9) are satisfied. Here the
Q,,(x) are rather intricate polynomials of degree 3k -- I, determined indirectly
(see V. V. Petrov [15]) with coefficients depending upon cx3/a3, .. " CXk+2/a1,: 2

where

a 2 ~= Var(X). (1.15)

If condition (l.8) is satisfied not only for 0 j < r but also for j-= r, and
(1.9) holds, then it can be shown that Q,,(x) =- 0 for I ,.:::; k r -- 2,
implying that

. I
FT --- F v* ==. 0 (._.. _-~-).

fI ../\ \ n{r 2)/2 .
(n --+ co).

Dropping the Cramer condition (1.7), the question arises as to what happens
for the counterpart (1.11) with large-O replaced by small-o. This leads to
Theorem 3.

If (Xn):~l is not identically distributed, Lindeberg gave a sufficient con
dition for (1.1) or (1.2) to hold. It is given by

for n --+ co and every 8 > 0, where

(1.16)

(i,j EO N). (1.17)

Conversely, if Feller's condition is satisfied, namely

lim max (ads,') = 0,
n--jf' l<~_ 1"-11

(1.18)
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then Lindeberg's condition follows from (1.1) or (1.2), or equivalently from

il F rn - Fx* ii = 0(1)

This led us to the result that (see Theorem 4)

(11 -)- CX)). (1.19)

where
Yr = £(1 X* i'),

(l.20)

(1.21 )

provided (1.12) holds for °~} ~ r, i E N (r ••;:. 2) and Feller's condition as
well as a generalized Lindeberg-type condition is satisfied, namely

(1.22)

for 11 ~ CX) and every 8 > 0, where

n

tnT := L £(! Xi - CiLi n·
kl

(Note that in case r = 2 condition L n 2(8) reduces to (1.16), and (1.12) is
satisfied for} = 0, 1,2, with L~~l (f32,i -+- Y2(Ti

2
) = O(sn2

). So (1.20) coincides
with (1.19). However, condition L nT(8) does not imply L~-1(8»).

The four theorems announced will be established in Section 3. While
Section 2 is concerned with some preliminary results, Section 4 is devoted to
an application of our Theorem 2. Section 5 closes with concluding remarks
on the norm chosen as well as with an open problem.

2. PRELIMINARIES

We need to recall the definition of the modulus of continuity and Lipschitz
classes. The former is defined for f E CB(R), 8 ~ °by

w(f; 8) = sup Ilj(x + h) - j(x)11 ,
1">::';0

(2.1)

having the properties that w(f; 8) is a monotonely decreasing function of 8
with w(f; 8) ~ °for 8 ~ 0+, and

w(f; A8) ~ (l + A) w(f; 8) (each A > 0). (2.2)

A function fE CB(R) is said to satisfy a Lipschitz condition of order ex,
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°< ct ~ I, In symbols fE Lip ct, if w(j; 0) == O(Oa). It is obvious that
f' E CB(R) impliesfE Lip 1.

Concerning the operator Vx defined by (1.5), it is a contraction, i.e.,
Ii Vxfll lin for all fE CB(R). If Xl' X2 , ••. , Xn are independent LV., then

(2.3)

The operators VXi and VXj commute, and VXi VXj if f'x,(x) === Fxj(x),
i.e., if Xi and Xi are identically distributed.

If the Xl"'" Xn are moreover independent, and c, > °for i == I, 2, ..., n,
then

Vy:,n'~1 C-,' IX,. == V -I V -I 0'" 0 V. I •- . C1 Xl C2 X 2 en X n
(2.4)

In particular, if Ci = c > 0, i I, 2, ... , II.

(2.5)

where X represents some LV. Xi .
Furthermore, if A and B are two contradiction endomorphisms of CB(R)

which commute with each other, then we also make use of the inequality

II Ay - Bnfli ~ nil Af - Blil (fE CB(R); n EN). (2.6)

More generally, if AI' A 2 , ... , An, Bl , B2 , ... , Bn are endomorphisms of
CB(R) consisting of commutative, linear contraction operators, then for
any fE CB(R),

n

II A l A 2 0 ... 0 Anf - B1 B2 0 ••• 0 Bnfl ~ L: II Ad _. Bdll . (2.7)
i~l

Finally, if X is any r.v. with EC X n < 00, then E( X n < + 00 for
any l~.i r, and

1 + E(I XI'). (2.8)

3. MAIN RESULTS

THEOREM I. Let (Xn)~~l be a sequence of real independent r.u. (not
necessarily identically distributed) such that

Vi(j) == J xid[Fx(x) - Fax'(x)] == 0
R 1 t

Pr,i == E(I Xi n <,00

(0 ~.i < r; i EN),

(i EN)

(3.1 )

(3.2)
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for some fixed r ? 3, r E N. Then for any f E C~-I(R)

V f - V j"l <~ 2 (fir-I). -1) ~ (Q -I. I' I. 1)Tn X* I '--" ( _ I)' 1'-1 W ,Sn L., I-'r.i i y"Ui'- .r . S n i~1

If in addition to the above hypothesesP,'-ll E Lip cx, 0 < cx I, then

THEOREM 2. If (Xn):~l is identicalfv distributed, condition (3.1) being
replaced by (1.8) with f3r = E(I X I') < 00, then for anyfE C~-I( R)

(3.3)

If in addition pr-ll E Lip cx, 0 < c.: I, then

V TJ - Vx*f;1 = O[n-Ir-3+~l/2].

In particular, under the above hypotheses,

r f(x) d[FrJx) - Fx*(x)] = O[n-Ir-3+ol/2].
oR

Proofof Theorem 1. First note that in view of (2.4)

(3.4)

V Tn = Vs;;-'X," V S';;-'X2 0 ... 0 Vs;;-'Xn (3.5)

Vx* =~ VU,S;;-'X* 0 VU2 .;;;-'X* 0 "'0 Vuns;;-'X*, (3.6)

the latter holding since L:7~1 (UiS;;1X*) is a normally distributed LV. with
mean zero and variance one.

SincefE C~-l(R), one has by the Taylor series expansion

1'-1 xi xr-1
f(x + y) cc= I ~ f(j)(y) + . . , [pr-1l(1]) - flr-1l(y)],

j~() }. (r - 1).

where 1] is some number between y and x -I- y. Applying the operator
Vs-IX to 1, this yields

n ,

V,,;;-'X}(y)

= r f(x + y) dFs-Ix.(x) = r f(xs;/ + y) dFX;Cx)
oR n JR

1'-1 s-i S-(r-1) •
cc i~ J; CXj.d1i)(y) + (r n_ I)! J

R
X r- 1[jlr-ll(1]) - flr-1l(y)] dFx,(x),
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where Y) is now between y and y ,- S;;IX, and (Xu is defined by (1.17). Since

I J~ XI"-lU(T l)(y) -~ pTlJ(y») tlFx/x) I

r i x II W(f(T-ll; Y) y i) dFx/x)
'R

W(f(TI); S;;l) r ! Xii (I i x j) dFx,(x),
'R

in view 0[(2.2) as: 1) - y, S;,l x i. it follows by (2.8) that

1'--1 --j

I
' v -J j -- '\' ~ ,x· .. [(j), '" Xi L., /" . ).1. I
, j~tl .•

f3r.i being defined by (1.14).
Analogously, since

'-(1" 1)

(;'II Tff (2,81',1 I) W(f(T!); S;,l), (3.7)

(Xu E(X/) == E((a,X*)i)

by (3.1), and, in view of(l.2l) that

(0 j r; i eN)

Yla/ = a/En X* n E( aiX* IT),

one has. again by (2.2), that

(3.8)

Combining the estimates (3.7) and (3.8) one has for each i = 1,2,... , n

. (,-1)

" V.,-,,'x,.f'--- Va"'-n1x.,/'li SII (2 P I 2Yra/ -I 2) W(!IT'I); s'-n l
).". (r=1)1 fJl".i

By (3.1), (3.2) and (2.7) this implies

n

II VT,/-- Vx.fij < I V"-;;'x)- V"iS;lX·fi'
I=l

2·(r--l) n

-,!"n__. w( [Cr-ll. S·l) I (f3r' + Yra/ -+ 1),
(I' - I)!' , n '~l ...

completing the proof of Theorem 1.
Concerning the proof of Theorem 2, if (Xn)~=l is identically distributed,

then a ·2 -- 1 P . = 13 I' =1 2 11 S 2 ~~ "II a·2 cc= /1 or Sr-l =" n(r-lJ/2l --- 'fJr,l r' " ... " n L..l=l l 11' ,

and L~=I (f3r.1 + Yra/ + I) = D(n).
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THEOREM 3. Let (Xn)~l be a sequence of real, independent and identically
distributed r.ll. such that

(0 j r)

andfJ" = £(1 XII') < +ooforsomefixedr? 2,rEN. ThenforanyfECBr(R)

In particular,for any fE CBr(R)

(n ~+ (0). (3.9)

j~f(x) d[FT,,(x) - Fx*(x)] = o(n-Ir-21/2) (/1 --+ (0).

Proof Since fE CBr(R), we may apply the operator V,;;-IX to the Taylor
series expansion of f of order r (instead of order r - I as in proof of
Thm. I) to yield

where YJ is some number between y and y + S;IX . SincefE CB"(R), to each
E 0 there exists 8> 0 such that I YJ - y I < 8 implies Iflll(YJ) ~- P")( y)! < E.

For this 8 we split up the above integral into

r, . xr[jlr)(YJ) ~ f'f)(y)] dFx(x) + r xr[prl(YJ) - f'r)(y)] dFx(x)
.. :):1<8:-;1/ .., !.;1"1);881/

= II + I~, say.

For II one has i YJ - y i ~ S~1 I x I < 8, implying

I II ~ E r I x II' dFx(x) ~ EfJr .
• Ixl<8sn

For 12 one has !prl(Yj) ~ f(r)(y)! ~ 21If(r) II, giving

I12 1 ~ 21If(r) Ii J I x II' dFx(x).
Ixl>asn

Since fJr is finite, Jlxl>k I x II' dFx(x) --+ 0 for k --+ 00. Therefore for n suffi
ciently large I 12 I < E since Sll = (n)I/2.

Thus one has for n sufficiently large

I' 'r S-i

I
I V,-lxf - L -;'- OI.flil = o(s;:;-r)
i -"n j=O J! :J

(n -->- (0).
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Since E(X*/) ('iJ, 0 ~ j ~ rand E(I X* n ~~'.' Yr is finite, one has a
corresponding estimate for the LV. X*, and so by the triangle inequality

(n -+ 00).

Tn view of(2.6), (3.5) and (3.6) this gives

II VT,/ - Vx*fli n I, Vs;;lxl Vs;;lx*fl! == 0(n-(r-2)/2),

and so the desired estimate (3.9).

THEOREM 4. Let (XrJ::~1 be a sequence of real, independent r.v. (not
necessarily identically distributed) such that (3.1) and (3.2) holdfor some r ~ 2.
Assume further that the generalized Lindeberg condition (1.22) of order r
as well as Feller's condition (1.18) be satisfied. Then for any fE CBT(R)

(1/ -+ (0).

Prool On account of (3.5), (3.6) and (2.7) it suffices to show that

(n-+(1J)

for eachfE cBr(R).
Analogously as in the beginning of the proof of Theorem 3 we have

r -i

VS;lxJ(y) -~ ;~) .~!- ('ii.dUI(y)

= s~,r iJ' -;-- r.. )rflr)(ry) - flT)(y)] xTdF4x) = 11 + 12 , say,
r. \ IX!<&Sn ~ lo:I):8sn /

whe!"~ YJ is some number between y and y + S;;:1X, and °is chosen as in the
proof of Theorem 3.

Since f YJ - y I :'( S;;:1 f x I < 0, i 11 I :'( E(3T.d(r !snT
), and one has

J' -j " -1' -1'

II VS;;lxJ-- I s/·7 ('ii,d(j) II ~ E(3,',i !J;, + 2111(T) II !Jrn, J.. i x IT dFx,(x).
I j=O ' • • • 1:1'1.;:887)

The counterinequality for the LV. X* reads on account of (3.1)

I V I'· ~ S;;:i jT) II.1 s;;lu,X*. _. L.. T ('ii,i ) .
)-=0 .

./ YT r -T "(T) ~ J> '. T"'" E, Gi sn + 2111 II, I x I dFuix*(x).
r. r. Ixl>osn
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Combining both inequalities gives

where

Multiplying by r!snr, summing over the i's and dividing by 2:;~1 ({3r,i + ')Ira{),
one has

since {3r,i > 0, ai > 0, ')II' > 0.
Since in view of Lindeberg's condition (1.22) the first term in the curly

brackets tends to zero for n -+ 00 (noting that 2::1 {3r,i = tnr), one need
only show that Un 2:;~1 'n,i -+ °for n -+ 00, where

n
-1 _ '\' I'

Un - ~ ai .
£=1

Indeed, letj be the index such that aj == max1';;i';;n ai . Then

= r . I x Ir dFx.(x).
~ .. i:.c!;3(8s

1
)/oj

Applying Feller's condition (i.e., snlaj -+ 00 for n -+ (0) and noting that
£(1 X* n < +00, the theorem follows.

4. AN ApPLICAnON

Let us consider an application of Theorem 2 to a particular sequence of
identically distributed r.v. (Xn}~~l' kindly suggested to us by Professor
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Kaerkes, Aachen. These may be introduced via the d.f's Fx of the X n which
are equal to another for all n E N, i.e., n

/0 for x -,,/3,

\ Ii for --V3 x . 0,
Fx(X) /2 for 0 x \/3,6 "

\ I for \/3 x.

The hypotheses of Theorem 2 are satisfied with r 6. Indeed, E(Xj) = 0
for j odd, and E(Xj) == I, I, 3, 9 for j ~= 0, 2, 4, 6, respectively, implying
/Lei) = 0 for 0 ~ j < 6. Hence (3.4) takes on the form

for each pGl E Lip ex, 0 < IX I.
In the particular instance thatf(x) = eiux, fixed U E R, one has the estimate

the large 0 depending on u, indeed

and

J eiuXdFx(x) = t[2 + cos U V3].
R

(4.1)

It is important to note that (4.1) reveals that the condition (1.7) of Cramer
is not satisfied for this example. More generally (see [10 p. 26]), Cramer's
condition is not satisfied if the identically distributed LV. X n have lattice
distribution.

5. CONCLUDING REMARKS

The original question of this paper was to examine conditions upon a
sequence of ident. distributed r.v. such that the approximation (1.1 0)
holds. However, in attempting to reach this goal we found conditions
yielding (1.11). As noted, we needed one condition less than what Ibragimov
[9] needed to establish (1.10) in the case of even r, namely condition (1. 7).
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Moreover, our proof proceeded in the "original" function space and so was
rather elementary, essentially only making use of the Taylor series expansion.
Ibragimov's proof, as well as all other proofs yielding estimates on the rate
of convergence -as far as the authors are aware-always proceed via the
"transformed" function space, in other words are carried out by means of
characteristic functions, thus Fourier transforms. Moreover. these proofs
are rather long and use intricate estimates. See also Feller [22, p. 487].

The question still remains whether it is possible to show that (l.ll) implies
(1.10) under some additional condition such as (1.7). More precisely, does

forfr= cBr(R) imply that

sup IFTn(x) - Fx*(x) I= O(n-(r-2)/2),
XER

(5.2)

under (1.8) together with some further condition?
Note that if (5.2) holds, then in the case of even r 4 an inverse result of

Ibragimov [9] implies that (without use of (1.7)) f3r < +eo and fLU) =c 0
for 0 ~j < r in (1.8), which in turn implies (5.1) by our direct Theorem 2.
Recall that in our application of Section 4 the crucial condition (1.7) is not
satisfied.

The matter described above could also be discussed in the case of non
identically distributed LV.'S. But this should be much more difficult as there
seem to be no comparable results known.
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